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FOREWORD

Despite the fact that parachutes have been in use for many years,

no ccuapletely satisfactory theory exists for the prediction of stresses

in a canopy. This hinder, good design. This report describes a

mathematical mdel for predicting canopy shape and stresses in steady

descent which is superior to those now In use. This model is embodied

in a computer program that can be used for design studies if desired.
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ABSTRACT

A theory is presented for the stress analysis of a flat,

circular parachute in steady, vertical descent. Unlike

previous treatments of the problem, this theory does not

assume that the shape is known. Instead,the thiory present.s

relations between the pressure distribution in the opened

condition and the shape, drag and stresses in lines and

fabric. The theory results in a non-linear third order

system of ordinary differential equations with boundary

conditions at both vent and skirt. This system was solved

by a computer program based on the Runge-Kutta method of

numerical integration. The results are in fairly good

agreement with measurements on parachutes. The computer

program can be used for studies of effects of design changes

on shape, drag and stress, and the results of a small study

of this sort are included.



1. INTRODUCTION

In recent years repeated attempts have been made to

analyze the behavior of parachutes and devise formulas

suitable for their design. Much progress has been made,

but the state of knowledge is still not wholly satisfactory.

The best analyses currently available, Heinrich and Jamison

snd Topping, Marketos and Costakos2 rely c- knowing the

deformed shape as well as the pressure distribution before

the stresses are analyzed even in steady descent. Present

knowledge about large deflections of structures suggests

that it should be oussible to calculate the stresses and

deformed sh-..-! concurrently, although some assumptions must

still be made about the pressure distribution in the

deformed state. We shall undertake to do this in the

present paper.

To be specific, we analyze a flat circular parachute in

s-teady, vertical descent by an approximate theory for large

elastrc deflections. This theory is like (but goes beyond)

1th•t of Heinrich and Jamison1. The parachute is regarded as

a completely flexible structure, i. e., none of its elements

(cloth, cords, reinforcing tape, etc) have any bending

stiffness. The resulting analysis resembles the large-

deflection (non-linear) membrane version of thin shell theory

but differs from it because of the important part played by

the cords. A number of assumptions are made, of which the

most important are listed below-



(i) The 3trains in the fabric and cords are small even

though the deflections are large.

(ii) The fabric is supposed to possess no resistance

to stresves in the meridional (radial) direction, all forces

in this direction being resisted solely by the cords.

(iii) Corresponding points on each gore experience

identical stresses and deformations, and the same is true

for each cord, i. e., the deformation is, loosely speaking,

axially-axisymmetric.

(iv) The circumferential radius of curvature of the gores

is ever7where much smaller than the meridional radius of

curvature.

(v) ?or each gore points on a circular arc about the axis

of the undeformed parachute lie in a plane perpendicular to

the cords after deformation.

The Paalysis, which is described in the next Section,

leads to a non-linear third-order system of ordinary differential

equations, which cannot be integrated in closed form. Therefore

a computer program was written for the solution of the system,

based on the Ruvge-Kutta method of numerical integration. The

program is automatic enough so that it Is convenient to study

the effect on the deform-tions, stresses, drag and parachute

weight of any two, arbitrarily chosen, design parameters, such

as the vertical velocity, number af gores or elastic

moduli of various structural elements. A description

2



of the progrem is given in Section 3 , and examples of the

results obtained are displayed in Section 4. Section 5

contains a discussion of the analysis and results.
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2. ANALYSIS

In analyzing the parachute we first treat a generic one

of the gores, which is assumed to be a flat sector of a circle

in the undeformed state. If G is the number of gores, then the

sectorial angle in both the undeformed and deformed states is

a- (1)G

We examine first the kinematics, then the statics and finally

the material behavior of the fabric.

Kinematics: Let A and B denote the material points

where a generic circular arc in the undeformed state meets

the cords that border the gore. In the undeformed state this

arc, AB, has length, Ra; see Figure 1. We assume that after

deformation the arc AB forma a plane circular arc, the plane

of the arc being perpendicular to the deformed cords, Figure 2.

The points A and B are now at a distance r from the axis and

are separated by a distance ra. If r is the radius of this
AB

circular arc and 2 B is the sectorial angle, then wv see from

Figure 3 that, provided 0<B<w/ 2 ,

r sinB - (1/2)ra ()
AB

2or Deformed length of arc AB (3)
AB

If 8 - ,/2, we may have a situation where adjacent gores are

4
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Figure 1: Undeformed parachute gore
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Figure 2; Def~ormed parachute gore
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Figure 3: Section of deformed gore normal to cords, a.'=O



pressed against each other with a contact length a' as shown

in Figure 4.

In this case

rA. - (7/2)ra (4)

Deformed length of AB - 2a'+wrAB

M 2o'+(n/2)ra (5)

The undeformed length of AB is Ra, so we may write

formulas for the circumferential fabric strain, yf, which is

assumed small,

Yf M change in length/original length

Yf - ( 2 8rAB/Rc) - 1 if B<T/2 (6)

Yf {[2o'+(w/2)ra]/Ra} - 1 if 6 - ff/2 (7)

Statics: If Nf is the circumferential tension in the

gore fabric, with dimenoions (lbs/ft) and p is the pressure

difference between the inside and outside of th'e surface,

then equilibrium requires

Nf W PrAB (8)

The forces exerted by the fabric on the cords,

per unit length of cord are shown in Figure 5. The

forces in the circumferential and normal directions,

No and Nn, are found from conditions of equilibrium,

we M Nf Cos a (9)

Nn a 2N f sinO)



[
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Figure 4: Section of deformed gore normal to cords,c'•O
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Nn

Figure 5: Forces transmitted from gore fabric to cords
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If we use (2) and (8), we obtain for 8 4 0

NE - (I/2)pra cot 8 (11)

N pra (12)
n

These formulas are valid both for 8<r/2 and 8 ir!2, and

in the latter case they imply

N O.

Material Behavior: We assume that the fabric obeys a

linear elastic law,

Nf w Efyf (13)

where E is the elastic constant of the fabric when stressedf

in the circumferential directicn. If 8<1r/2, we may use (2), (6)

and(8)to rewrite this relation in the form

r/R - 8-1{sinS+(I/2)(p/Ef)ru)

This can also be written, with the aid of (ii) as

r/R - 8-1sin 6{l+(Ne/E )sec 8),

or

N /E = cos 6{8 csc 8 (r/R) -11 (15)
e f 1

We see from (15) that in the limit aa 6 - 0 we obtain

Nt/Ef - (r/R) -1.

This can be interpreted to mean that, when the fabric is stretched

flat between the cords, i. e.,when there is negligible butlging

of the gores, we recover the linear elastic relation between

circumferential stress resultant and circumferential strain.

1i



In the calculations we shall adopt (15) together with

formulas equivalent to (14) and (13)

sin B - a(r/*(1/2)(p/Ef)ra - 0 (16)

N M E {Bcsc$(r/R) -1) '17)f f

as expressing the material behavior of the fabric when

B<.(/2.

When 8 - w/2, the elastic law (13) implies

(1/2)(p/E f)ra - {[2o'+(v/2)ra]/Ra} -1

or

a' - (1/2)Ra{ 1 -(%/2)(r/R)+(l/2)(p/E f)ra} (18)

together with

N -0 (19)

Nf- (1/2)pra (20)

We have now completed the portion of the analysis that

dea3with the fabric.

In analyzing the fabric we have neglected the meridional

stresses on the assumption that stresses of this type are

borne entirely by the cords. We must now, therefore, analyze

the statics and material behavior of the cords.

Statics of Cords: If Nc is the tension force in the

cords, measured in Ibs, then we can write down the two

equations of force equilibrium in the direction tangential

and normal to the cords with the aid of Figures 6 and 7.

These are

dN c/ds -2N sin(a/2)cos ý (21)

N cd/ds - N n-2N sin (a/2)siný

- pra-2N sin(ac/2)sino (22)

12



Figure 6: Sketch showing that the resultant of the N
forces on a cord is a radial in•rad forcee
2;, sin(a/2) per unit of cord length
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Nnds

I 2 Nesin(oV2)ds

",ýtNIC+dNc

Figure 7: Forces acting on an element of cord with length ds
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A partial check on the validity of these equations is

provided by studying their behavior as a-0. If we set N ra N
C S

these should reduce to the equations of equilibrium of membrane

shell theory,

d(rN )/dr - N (23)
s

Ns d(siný)/dr + N0 (sin•/r) - p. (24)

If we use the fact that (see Figure 8)

dr - ds cos ', (25)

and observe that

(2/a)sin (a/2)-l1

as a-O, we see that equations (21) and (22) reduce to the

proper limit as a-0.

Material Behavior of Cords: The strain in the cords,

Ys .is assumed to be small and we infer from Figure 9 that

Ys = (ds-dR)/dR = (dr/dR)sec6-1

The cords are assumed to obey a linear elastic relation
N = Ec y W Ec {,dr/dR)sec4-lO. (26)

This completes the analysis of the cords.

To put these equations into systematic form we

cbserve that

dr/dR - fl+(Nc/E c)}Cos - f cos 4 (27)

where

f - 1+(N c /E ).

Since

d/ds-(dr!ds)(d/dr)-(dr/ds)(dR/dr)(d/dR)

15
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Figure 8: Geometry of deformed cord
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FIgure 9: Derivation of formula for strain in cord
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we find from (25) and (27) that

d/da - (1/f) (d/dR).

Thus the equations of equilibrium and elasticity for the

cords form the system

dr/dR - f cosa (28)

d#/dR - (f/Nc)(pro-2Nosin(a/2)sin#) (29)

dN./dR 2fN sin(a/2)cos# (30)

who re

f - 1+(N C/EC) (31)

and N6  is determined as follows. If

l+%'r/2){(pa/Ef)-(w/R) } <0

then

"11 Afc&s8.(r/R)8cscB-l (32)

where B is found by solving the transcendental equation

sinB - 0(r/R)+(pra/2Ef) - 0 (33)

If

l+(r/2){(pa/Ef) - (ir/R))>0

then

N8  - 0 (34)

'- (Ral2){l+(pra/2E ) - (xr/2R)}

This is a third order, non-linear differential

equation system in the three unknowns r, * and Nc, and

therefore we shall need three edge conditions in order

to have a unique sclucion. At the vent, r - ri or R - Ri,

18



the cords continue across to the opposite side of the vent

through the axis of symmetry (see Figure 10). The elastic

law for the cords implies that

ri - Ri +(N c(Ri )/E 1 (35)

We shall take for another condition at the vent

n 0. (36)

These conditions are satisfied with Rood accuracy in a flat

circular canopy although in other kinds of parachutes,

notably those with the pull-down vent, more complicated

conditicns must be imposed.

The third condition is at the skirt, r - r or R - R

From the geometry, see Figure 11, we obtain

r - L cos (r-ýo) - r +L cost - n (37)
0o o o

where L is the deformed length of the suspension lines

between the skirt and the load (or corfluence noint).

If L is the undeformed length of the susnension lints,0

and YLis the strain in the suspension lines (which we do

not assume small), then

L - Lo(+2YL)1
2

19
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- FABRIC

Figure 10: Sketch of the vent
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Figure 11: Geometry of skirt and load lines
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The tension f,-rce in the lines is simply N C(R ), the tension

force in the cords at the skirt, hence, if E is the elasticL

modulus (ibs) of the lines,

•L N (R 0()/E L

L - L l+{2N c(R)/EL J/2

Then from (37) we find the condition which has to be sati.sfied

at the skirt,

r(Ro)+L ol+2N c(R )/E 1)1/2 cos(R ) = 0 (38)

We have therefore reduced the problem of finding the

defor.rad shape and stresses in the parachute to that of

solving the sy'stem of three, non-linear, ordinary differential

equations (28) - (30) for r(R) and 4(R) and N (R). TheC

quantities f and N which occur in the right sides of (28) -O,

(30), are determined as functions of Nc, r and R by means of

(31) -. (34). The edge conditions on the differential equation

system are (35), (36) and (38).

When this system has been solved, the drag, or weight of

the load, can be found from

D - GN (R )sin*(R ) (39)

Also the deformed shape is found by calculating the cord

profile, r(R) and Z(R), and the gore centerline profile,

r (R) and Z (R), see Figure 12. In this calculation r(R)g g

is of course known directly from the differential equation

solution, but Z(R) must be found by integrating

22
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gore profile

igure 12: Profiles of deformed cord and gore centerline
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dZ - dr tan * - (dr/dR) dR tan 0

and so we find with the aid of (28)

Z =f (R')sin¢(R')dR'

R' - ()

The gore centerline profile is then found, as in Figure 12,

rg - r+6sin# (41)

Z - Z-6cost (42)

g

where 6, the depth of centerline bulging, is given by

different formulas for a' - 0 and c'>0. If a' - 0,

B<w/2 and (see Figure 3)

8 - rAB (1-coss) - (1/2) ra(l-cosB)/sInS

- (1/2)ratan(B/2) (43)

If o'>0, B - w/2, we find from Figure 4

6 - (1/2) ra+o'. (44)

We shall now re-phrase this entire system of equations in

dimensionless form by introducing the new definitions
I m =Ri, r yRi Lo - JRi, R 0 xR ,

"z cns, N " Efn , Nf E fnf, Z z R 1,
: fg (45)

P ' -. 2-2Ef/Ri, Uf EfRi/E L a /E r - yRf fic' UL =yg~i'

D O E W, of 'ORZA iZ
24



The equations become

dy/dx - f cos€ (46)

do/dx - (2U ff/n) {qcay-n sin(a/2)sinO} (47)f sC

dns/dx - 2fUfncsin(a/2)cost (48)

f -l+n (49)s

If

l+qay- [ 7ry (2x) ]<0

then

n = cos8(8(y/x)csc -16 (50)
c

where 6 satisfies

sin 8 - By/x-qay - 0 (51)

and if

l+qay- (wyi2x) >0

then

n - 0, Biw/2 (52)

oa (1/2)xa{l+qay-(wy/2x)} (53)

the edge conditions are

n3(1) - y(l)-1 (54)

O(1) - 0 (55)

y(xo)+J{l+12ns(xo)/UL]) /2cos0(xo) - 0 (56)

The dimensionless load or drag is

W -Gn (x )sino(x 0 (57)

25



#x

z(x) -so {l+n5 (x')}sin(x)dx' (58)

y - y+Asin ý (59)
g

z - z-Acos ý (60)
g

and

A - (l/2)yatan(B/2) if 8<w/2 (61)

A - a+(l/?)ya if B - n/2 (62)

In discussing the pressure and stress distributions it is

also convenient to define dimensionless stress, drag and pressure

coefficients in a manner different from the dimensionless

quantities previously defined . We shall take

C - p/{(l/2)pV 2 pressure coefficientS~p

C D D/{(I/2)pV2 rR 2} - drag coefficientSDo 0

2
cc - Nc /{(1/2)0V-wR 0 - cord stress coefficient

S~2 2
Cf - NfR/{(1/2)pV rR } 2 fabric stress coefficient

If the foregoing analysis is correct, we must satisfy the

3rd order differential equation system (46) - (49) together with

the auxiliary equation (50) - (53) and the edge condition (54) -

(56). This system was taken as the basis for the computer program.

The numerical analysis underlying the computer program is described in tle

next Section.

*Notice that because of (13), (26) and (35) the dimensionless stresses

nff and n. defined in (45),are also respectively just the strains

Yf 9 Y2

26



3. NUMERICAL ANALYSIS OF THE PROBLEM

The numerical analysis of this problem consists primarily

of solving the differential equation system (46) - (48) by

numerical means and secondarily satisfying the edge condicions.

We shall deal below with these two aspects of the problem and

then describe other aspects of the computer program.

The treatment of the differential equation system is

based on the well-known Runge-Kutta method for numerical

integration. The procedure is not quite routine because

of the need to evaluate nc and insert it in the right side

of (47) and (48) at each step, n being determined by (50) -c

(52). In particular, if

l+qay- {ry / (2x) }<0,

we must determine 8 by solving (51) and then evaluating t
c

from (50). The solution of (51) was accomplished by using

the Newton - Raphson iteration defined by

Sk+ _ = _g V+s in8- s (y /x) (66)
k+l = 8 k ( coss - (y/x)

As usual with this procedure convergence is uncertain. However,

it became clear after a little study that convergence occurred

when the initial B was chosen well above the value of B for which

cos s = y/x.

This condition was satisfied by choosing as starting values

8 = .4 if >EO

B .4+(-2c1)/2 if E<O.

£ - (y/x)-l.

27



In order to avoid difficulties for small values of 8

in (50), explicit polynomial approximations were used for the

trigonometric function, i. e.,

2 4
cos 8 = 1-C 1B +C 2

sin 8 1={1-S 8 +S28 4
1 2

C1 , C2 , S1 , S constants

With these approximations we may write (66) and (50) as

qay-Bfc+ 2 (S-S 282),

Sk+l Bk+ ........ C 262) - Hk (67)

E+8 2 (C1-C 2 B 2

2 2{e+B2 (SI-S 2 6)} 4

n - {l-C a2+C2
C.

(1-8 2(S -S2B )}

These formulas are sufficiently accurate for practical purposes

and are well-behaved for 0,<8,<r/2.

Because the edge conditions (54) - (56) are not all applied

at the same point, it is necessary to adopt a trial-and-error

scheme in order to satisfy them. This is begun by assuming a

value for the deformed vent radius, y(l). Next the values of

n s(1) and *(l) are found from (54) and (55), nc (1) is evaluated

as in the preceding Paragraph and we can then begin the Runge-

Kutta procedure for integrating the differential equation system.

With this procedure the solution is built out in the x-direction

until the values at the skirt, y(x 0 ), O(xo) and ns (x ) are obtained.

28



These values should satisfy (56). Usually, of course, they will

not, and we must change the assumed value of y(l) and start aeain.

In the program this process is made automatic by including a

subroutine that applies the Rule of False Position when a sign

change is found in the left side of (56).

In the program a general pressure distribution is assumed,

given by

C Ao+ A 1 + A2 2 +A 3 03  (69)

The constants Ao, A1 , A2 and A3 are read in and permit a fairly

wide choice of pressure distributions. The scarcity of reliable

information on pressure distributions makes this procedure

necessary. It is worth noticing that C is assumed to be ap

function of ý (the deformed cord angle) and so depends to a

certain extent on the deformed shape.

After finding the complete solut~on, satisfying all the

edge conditions, the program carries out the numerical integration

of (58), using Simpson's Rule, and calculates the cylindrical

coordinates of the cord and gore centerlines by means of (59) -

(62).

In order to make the pro6ram useful for design purposes,

provision is made for the computation of certain information

beyond merely the shape and stresses. This extia information

includes an analysis of the parachute weight, i. e.,the

distribution of the total weight among the different structural

elements (fabric, cords, fixtures etc). Also the maximum

29



cord and fabric stresses, as well as the vent and load line

stresses, are calculated and compared with the respective

breaking stresses to find safety factors for each structural

element. Warning messages are printed if the safety factors

fall below unity.

The program Is arranged so that in one pass the user may

choose any two of the input quantities and vary these

independently by chosen numbers of chosen increments, so that

the effect on the solutions of changes in these quantities

may be studied. For instance, the drop velocity, V, and fabric

modulus, Ef, may be varicd, or the effect of changing two constants

in the hypothetical pressure distribution (69) may be found.

30



4. EXAMPLES OF RESULTS

This program was used to study the effects of different

variables on the shape, drag and stresses. For this purpose a

basic set of parameter values was chosen, typical of the C-9 canopy.

Vent radius - 1.4 ft

Ratio of skirt to vent radii - 10

No. of gores - 28

Suspension Line Length - 28 ft

3Elastic Modulus of Cords - 2 x 10 lbs

Elastic Modulus of Fabric - 2 x 103 lbs/ft

Elastic Modulus of Load Lines - 2 x 103 lbs

The mass density of air was taken as

0 - 2 x 10-3 lb-sec/ft4.

and the drop velocity as

v - 20 ft/sec

The basic pressure distribution was taken as a constant function

Cp - 1.5, defined by

Ao - 1.5, A, - A2 - A3 = a

For this basic configuration the following results were found:

CD = Drag coefficient - .626
0

D - max. diameter - .671 D
p 0

-o cord angle at skirt - 1090

or
E) -f -(n/2) - 190

31



where D 2 ZR is the flat circular diameter and E is the angle
0 0

between the suspension lines and the canopy axis. The deformed shape

is shown in Figure 13, and the cord and fabric stress coefficients

are depicted in Figure 14.

The theory was further tested by investigating the influence

of various parameters on the shape, drag and stresses. A large

number of results was obtained, the most important of which are

displayed in Tables 1 and 2. We may summarize the main features as

follows:

(I) Table 1 shows that Dp/D , and hence the shape, is not
o

greatly affected by any of the parameter changes. The suspension

line length ratio, A, has the greatest effect on Dp/D , but its
0

effect is not especially large.

(ii) According to Table 1, A is the only canopy parameter

that affects the drag coefficient significantly. The effects of

G and V are small, and the elastic constants have negligible influence.

(iii) The angle, 0, of the load lines, which is the same as the

angle of the tords at the skirt, is seen in Table 1 to be significantly

affected only by changes in A.

(iv) We conclude from Table 1 that G is the only variable that

greatly influences C although A has some effect. In contrastC max

Cf max is perceptibly affected by changes in all the canopy parameters.

(v) The cord stress is least at the vent and increases to a

maximum at the maximum diameter, which is usually at x - 9, i. e.

near the skirt. Hence the familiar formula1

c CD /G cos 0,

0

32
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Figure 14: Cord and fabric stress coefficients for basic configuration
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TABLE 1

Parameter D 0D C Max C Max 0- 9 -(,/2)

E

1000 .673 .627 .0237 .264 19°
2000* .671 .626 .0237 .185 190
3000 .671 .625 .0236 .155 190

Ef

[0
100 .672 .626 .0237 .0R7 0

1200 .672 .626 .0237 .140
2000* .671 .626 .0237 .185 1g

G

16 .665 .614 .0406 .219 lq1
28* .671 .626 .0237 .185 1q 0

40 .674 .630 .0167 .155 1g0

A

•7 .645 .549 .0218 .175 260
1.0* .671 .626 .0237 .185 190
1.3 .687 .671 .0248 .191 150

V

10 .670 .623 .0236 .210 190
20* .671 .626 .0237 .185 lq°
30 .673 .629 .0238 .176 190

*Denotes value of variable for the basic configuration.
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TABLE 2

- Constant C D max/D C Max C Max C f

1.2 .671 .500 .0 189 .15n 1()o1.5* .671 .626 .0237 .1R5 q°

1.8 .672 .751 .(284 .22n 190

Linearly
Varying C1

Cp(Xo

1.500 .671 .626 .n237 .1R5 19°1.882 .699 .707 .0268 .202 2n°
2.268 .702 .785 .0299 .218 20 0

1
In the case labelled "Linearly varying C ", C varies linearly in

between Cp(1 ) - 1.5 (at vert) and C p(x 0 ) at tle skirt.
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which is exactly true only for C (x ), is also approximately true

for the maximum value of C

(vi) The fabric stress is greatest at or near the- vent and

decreases as we go toward the skirt. The exact location of the

maximum fabric stress dependson E as well as the pressuref

distribution&

(vii) From Table 2 we see that for constant pressure distributions,

changing the pressure scarcely affects the shape and causes merely

proportional changes in the stresses. If the pressure increases

linearly in * from the vent to the skirt, all quantities are affected.

We shall comment on these results in the following Section.
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5. DISCUSSION

The theory developed in this paper is apparently the first

in which the shape and stresses are calculated simultaneously.

To judge the theory we must of course compare it with experimental

results. In making this comparison it is first necessary to

understand clearly what the theory does.

If we are given a flat, circular canopy with known geometrical

and physical properties (respectively embodied in Ri, Ro, L 0.

and Ef, Ect and EL), dropping vertically at known velocity V through

air with known mass density, p, the analysis furnishes us with the

relations between the oressure distribution on one hand and the

shape, stresses and drag on the other. If the pressure distribution

is kitown, we can solve these relations (by means of the computer

program) to find the quantities of engineering interest. These

quantities will depend in general upon the pressure distribution.

An ideal experimental check on the theory would require that

simultaneous measurements of pressure distribution, stresses, shane

and drag be made on a canopy that is dropping vertically. Cond-tions

for such a test may be difficult or impossible to realize in practice,

and it appears that no experiments yet made will permit such a

complete check on the theory.

However, many experiments have been made that, while incomplete

in some respect, give us the information for a partial check on the

3
theory. For example, Berndt and Deweese made measurements on a

C-9 canopy in towed flight. Theii results compare with the present

calculation for the basic configuration as follows:
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Measured Calculated

CD 0 .65 C Do .626

D ID m .648 D /D = .671
P 0 p0

0 - 17' 0 = 190

Their measured shape is plotted in Figure 13. The general agreement

is good although the theuretical shape is slightly wider and shallower

than the experimental shape. We may conclude from this that the

prezent theory is not grossly in error. However, it is necessary

to remark that, if we had assumed a different vressure distribution

in the calculations, we could have arrived at quite different values

for C ,as is evident from Table 2.
D

0

The Parachute Handbook4 gives the general estimate

D I/D - .7,

which compares reasonably well with the present calculations,

Dp/D = .67 for the cords

- .73 for the gore centerlines.

Moreover, the observed generality of this estimate tends to confirm

the theory, which predicts that the shape is insensitive to changes

in most of the parameters.

The Parachute Handbook4 shows many experimental results in which

C is seen to decrease with an increase in V. This does not agree,

atofirst sight, with our results, Table 1, which show that CD

increases very slowly with an increase in V. The discrepancy is

probably due to one or both of two causes:
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(a) The canopy may not be descending vertically in the tests.

The theory assumes vertical descent and may give inaccurate results

if the canopy oscillates or glides laterally.

(b) The pressure distribution may change as the velocity

changes. In particular, increasing velocity will cause increase

of the tensile stresses and strains in the fabric, and this will

lead to greater porosity of the fabric. The increasing norosity

will permit increasing air flow from the high-pressure to the low-

pressure side of the fabric. Thus the pressure difference will not

increase as fast as the impact pressure, or, in other words, the

pressure-difference coefficient, Cp, will decrease. This will

cause CD to decrease.
0

In general we may say that the present theory represents a

first, admittedly somewhat crude, attempt to analyze o:rachutes

without assuming the deformed shape. Clearly, several of the

assumptions described in the Introduction are not very accurate.

notably (ii), and (v), while (iv) is probably inaccurate near the

maximum diameter. Nevertheless the results are goofd enough to

suggest that the general procedure is a workable one which can be a

starting point for future efforts.

It is perhaps also uqeful to point out that this theory renresents

a step in the direction of calculating the opening behavior of Dara-

chutes. For a major part of the difficulty in the opening nroblem

consists of estimating the shape and forces of the inflated part of

the canopy. The not-yet-inflated part of the canopy is relativelv

easily dealt with. The estimate of the shape and forces of the
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inflated part of the canopy is much like that of a (smaller)

completely open canopy. We may anticipate, therefore, that the

present analysis, or one like it, will be an inteRral part of an

analysis of opening behavior.
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NOMENCLATURE

Ao, All, A 2 A Constants in canopy pressure distribution

C1, C 2 Constants in formulas for cosine function

C 00 Drag coefficient based on flat circular area

C Coefficient of net pressure
P

C, CCf Stress coefficients in cords, fabric

D D Diameters in ovened and flat circular statesP• 0

Ec, Ef, EL Elastic moduli of cords, fabric, load lines

f 1+(N c/E )

G Number of gores

3 Dimensionless load line length

L L Length of load lines in undeformed and
deformed states

NC Nf Tension force in cords, fabric

NN Force resultants on cords in circumferential
o Nn and normal directions

n5, nf, Dimensionless force ia cord, fabric

Vc Dimensionless circumferential force resultant

on cords

p Net outward pressure on gore fabric

q Dimensionless pressure

R Radius of particle t n flat circular state

Rip R0  Vent and skirt radii in flat circular state

r Radius of cord in opened state

rip ro Vent and skirt radii in opened state

rAB Circumferential radius of curvature of gore
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NOMENCLATURE (Cont'd)

s Arc length of cord

Sv S 2Constants in formulas for sine function

Uf, Ut, U L Dimensionless elastic constants

V Vertical velocitv

D Drag force

W Dimensionless drag

x Dimensionless radius in flat, circular state

x Dimensionless skirt radius in flat circular
state

y Dimensionless radius in opened state

Z, Z Axial cylindrical coordinate of cords and
gore centerline

z, z Dimensionless axial coordinate of cords and
g gore centerline

a Included angle of gore

B Edge angle of gore bulge

Y Yr YL Strains in cord, fabric, and load lines

6 Depth in bulge

Dimensionless depth of bulge

0 Angle between load line and axis

A Load line length ratio .L /) - JRI/(IR)
0

o Mass density of air

a' Contact length between adjacent gores

0 Dimensionless contact length between adjacent
gores

6 Angle between cord direction and horizontal

4o • at the skirt
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